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Which one is a 
better line?

overfitting
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Quality

this model has more predictive 
power

overfitting
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Acidity

Quality

this model is highly accurate on training data
but bad at predictions anywhere else

overfitting
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Acidity

Quality

■ too-precise fits to original data without generalization is called overfitting

overfit!

overfitting
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underfit!

■ model is unable to capture relationship between variables

degree 1

underfitting
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degree 2

fitting
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degree 6

overfitting
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that’s overfit!

degree 10

overfitting
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overfitting
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still not good

underfitting
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overfitting
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overfitting
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1 2 6 10

degree

■ overfitting frequently takes place when the degree of a regression model is set too high

overfitting
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How do we address under/overfitting?

15



address overfitting

training data
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training data

validation 
data

test data

address overfitting
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training data

validation 
data

test data

Model 
Hasn’t Seen

Model Has Seen

■ we use validation and test sets, small subsets 
of data the model hasn’t seen before, val point(s)!

address overfitting
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training data

validation 
data

test data

Model 
Hasn’t Seen

Model Has Seen

wait but what’s 
the difference?

address overfitting
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test data

Whole Dataset
standardized for 
benchmarking!

■ test sets are, unlike validation sets, usually set by the 
data creator as common, unseen benchmark data.

address overfitting
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overfitting can be dangerous
data ethics
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data ethics

which one has pneumonia?
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different hospitals used 
different markers!

■ models, when not controlled for external factors, often overfit on easy 
targets

data ethics
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Feature selection
& Feature engineering
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Motivation
■ Performance could degrade when including input variables that are not relevant to 

the target variable. 
■ Overfitting for tasks with a smaller # of samples
■ A large number of variables can be computationally expensive

Feature Selection
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Typical techniques
■ Remove features with low variance (e.g., zero variance)
■ Remove features with low correlation based on statistical tests
■ Sequential feature selection

➢ Forward: iteratively add the best new features
➢ Backward: iteratively remove the least useful feature

■ https://scikit-learn.org/stable/modules/feature_selection.html 

Feature Selection
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https://scikit-learn.org/stable/modules/feature_selection.html


Feature Engineering
■ Different from feature selection
■ Example: predict time-to-sell of a house 
■ Input (features and label): square footage, lot size, transaction date, built date, and 

price 
■ Engineered features could include

➢ Cost per sq. ft
➢ House age 
➢ Zip code
➢ School rating

■ Data preprocessing (e.g., normalization, missing data) sometimes are also 
considered as feature engineering

Feature Selection
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Typical process 
■ Brainstorming features
■ Deciding what features to create
■ Creating features
■ Testing the impact of the identified features on the task
■ Improving your features if needed
■ Repeat

Feature Selection
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Features
■ Feature selection
■ Feature engineering
■ PCA 
■ Differences

Feature Selection
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Improving Outcome
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Debugging a learning algorithm
■ A dataset
■ Applied a machine learning algorithm
■ Got a result, e.g., error rate 11%
■ Is this a good result?

Credit: Advanced Machine learning, Andrew Ng, Coursera, for the debugging discussion . 

Improving Outcome
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Establish a baseline 
■ What is a reasonable level of error we can hope for?

➢ Human level performance
➢ Competing/existing algorithms
➢ Educated guess based on experience

■ Additional baselines
➢ Random guess
➢ Simple heuristics

Improving Outcome
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Bias/variance

Case 1 Case 2 Case 3

Baseline 
(e.g., human)

10.6% 10.6% 10.6%

Training error 11% 15.5% 11%

Validation error 16% 16% 12%

Improving Outcome
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Debugging

■ Bias: error from erroneous assumptions in the learning 
algorithm.

■ Variance: error from sensitivity to small fluctuations in the 
training set.

■ Q: how do they manifest?

Improving Outcome
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Debugging
■ High bias: training error high
■ High variance: validation error high

Improving Outcome
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■ High bias: training error high
■ High variance: validation error high

■ What can we do?

Improving Outcome
Debugging

36



■ High bias: training error high
■ High variance: validation error high

■ Try getting additional features 
■ Try adding polynomial features
■ Try decreasing regularization or use larger models 
■ Get more training samples 
■ Try smaller set of features
■ Try increasing regularization or use smaller models 

Improving Outcome
Debugging
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■ Try getting additional features (high bias)
■ Try adding polynomial features (high bias)
■ Try decreasing regularization or use larger models (high bias)

■ Get more training samples (fixes high variance)
■ Try smaller set of features (high variance)
■ Try increasing regularization or use smaller models (high variance)

Improving Outcome

Debugging
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Error analysis
■ Examine where the model went wrong
■ Categorize the errors
■ Focus on how to fix these errors (or most of them)

Improving Outcome
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Example
■ Food spoilage prediction
■ Manually examine 100 examples where our model got wrong 
■ Categorize them based on common traits

■ Southern CA: 21
■ Valley: 10
■ Raining weather: 50
■ Packaging: 5

■ More data and features for SoCal and raining days

Improving Outcome

40



A Real Example
■ Gait analysis to classify stroke patient in recovery vs. control 

Improving Outcome
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When to Use Which Algorithm?
■ Start simple
■ Try the typical ones
■ Sklearn guideline

Improving Outcome
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https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html


Potential Pitfalls
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Things that can go wrong
■ Inconsistent preprocessing  
■ Data leakage  

■ Model is used on test data that has changed
■ Selecting appropriate metrics  
■ Hidden confounders  
■ Spurious correlations 
■ Performance on subgroups may be missing
■ Data biases

Potential Pitfalls
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Things that can go wrong
■ Inconsistent preprocessing (e.g., different scaling/normalization)
■ Data leakage (e.g., temporal or mixing subjects)

■ Model is used on test data that has changed
■ Selecting appropriate metrics (e.g., is 99% accuracy good enough?)
■ Hidden confounders (e.g., golf is correlated with heart attacks)
■ Spurious correlations  (e.g., hospital ID on images)
■ Performance on subgroups may be missing
■ Data biases (e.g., AI recruiter) 

Potential Pitfalls
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ML Practices
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Be Cautious 
■ AI/ML is not a cure-all

■ “All models are wrong, some are useful.” –George Box

■ Understand your models, know the assumptions and limitations of the models

■ Is AI a hype or a GE?
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ML Practices



Typical steps to apply ML 
■ Data preprocessing
■ Trying different ML algorithms

➢ Training set, validation set, test set
■ Diagnostics

➢ More training samples
➢ Increase/decrease feature set
➢ Increase/decrease regularization 

■ Loop back  
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ML Practices



A ML Project 
■ Why ML is a suitable approach

➢ Do not use ML for the purpose of using ML
➢ Evaluate existing approaches and room for improvement

■ Problem abstraction and formulation
➢ Set appropriate goals 
➢ Model complexity, data availability, evaluation 
➢ Domain knowledge critical 

■ Data collection and data cleaning
➢ What, where, and how

■ ML algorithms 
➢ This is often the “easy” part

■ Evaluation, sanity check, interpretation
■ Iterate the process  
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ML Practices



Characteristics of Good Problems
■ Existing solutions not satisfactory 

➢ Automate the process 
➢ Improve performance

■ Data availability: suitable data available or obtainable
■ Data quality and quantity 
■ Can evaluate proposed approaches
■ Large complex problem beyond white-box modeling
■ Understanding complex venue and large data 
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ML Practices


